

Regrouping to make 10	6 + 5 = 11 Start with the bigger number and visually partition the smaller addend to make 10, with the remaining beginning another tens frame.	Use pictures or a number line. Regroup or partition the smaller number to make 10. 3+9= $9+5=14$ 10 in a part whole model.	7 + 4= 11 If I am at seven, how many more do I need to make 10. How many more do I add on now? I know that 7 + 4 = 7 + 3 + 1 so the sum is 11.
Adding three single digits	4 + 7 + 6= 17 Put 4 and 6 together to make 10. Add on 7. 5	Group the items into the formation of a tens frame. Group the items into the formation of a tens frame.	4 + 7 + 6 = 10 + 7 10 $= 17$ Combine the two numbers that make 10 and then add on the remainder.
Column method – no regrouping	24 + 15= Add together the ones first then add the tens. Use the Base 10 blocks first before moving onto place value counters.	24 + 15 = 5 + 4 and 20 + 10	Expanded formCalculations $20 + 1$ $40 + 2$ $21 + 42 =$ 21 $40 + 3 = 63$ $21 + 42 =$ 21 $+ 42$ Moving from the expanded form to a more formal written method to create greater efficiency.

Additive structures:

First then now is identified as <u>Augmentation</u>	<i>First</i> Tom had two sweets <i>Then</i> Tom got one more sweet	2	+	1	=	3
	Now Tom has 3 sweets	Augend		Addend		
	The initial value, known as the au	igend is ir	ocrea	sed by the	e adden	nd (the new amount).

The combining of two or more quantities is identified as	Tom had two sweets and John had three sweets: how many do they have altogether?
Aggregation	
	Key vocabulary: How many? How much? What is the total? Altogether there are

Subtraction structures

First then now is identified as <u>Reduction</u>	First Tom had two sweetsThen Tom gave one sweet away2-1=1Now Tom has 1 sweet leftMinuendSubtrahend
	The initial value, known as the Minuend is decreased by the subtrahend.
Breaking a whole down into two or more equal parts is identified as Partitioning.	There are eight pencils. Five have been sharpened. How many have not been sharpened? There are two distinct parts, one of which is unknown.

Repeated addition	Use different objects to add equal groups.	Ensure the rotation of concrete objects to embed the understanding that 5 is 5 or 4 is 4 irrespective of its presentation.	There are 3 plates. Each plate has 2 star biscuits on. How many biscuits are there? 2 add 2 add 2 equals 6 5+5+5=15	Write addition sentences to describe objects and pictures. $ \begin{array}{c} $
Arrays – showing commutative multiplication	Create arrays using counters/ cubes to show multiplication	n sentences.	Draw arrays in different rotations to find commutative multiplication sentences. 4 × 2 = 8 2 × 4 - 8 2 × 4 - 8 2 × 4 - 8	Use an array to write multiplication sentences and reinforce repeated addition. Develop the use of language making the relationship between 4 groups of 2 = 8 4 2's are 8, 2 + 2 + 2 + 2 = 8 and 8 = 4 x 2

Start with multiplying by one digit numbers and showing the clear addition alongside the grid.

Moving forward, multiply by a 2 digit number showing the different rows within the grid method.

х	1000	300	40	2
10	10000	3000	400	20
8	8000	2400	320	16

Calculating efficiently by making the numbers smaller, using powers of 10: 30 x 7 = 3 x 7 ... 21 x 10 = 210

Division

Sharing objects into groups	Image: Weight of the second	Children use pictures or shapes to share quantities. $ \begin{array}{c} $	Share 9 buns between three people. 9 ÷ 3 = 3
Division as grouping	Divide quantities into equal groups. Use cubes, counters, objects or place value counters to aid understanding. 96 + 3 = 32 96 \oplus 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Use a number line to show jumps in groups. The number of jumps equals the number of groups. 0 1 2 3 4 5 6 7 8 9 10 11 12 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	$28 \div 4 = 7$ $? \div 4 = 7$ $7 = 28 \div ?$ Using the inverse operation to solve a statement.
Division using arrays	E.g. 15+3=5 5x3=15 15+5=3 3x5=15	Draw an array and use lines to split the array into groups to make multiplication and division sentences.	Find the inverse of multiplication and division sentences by creating four linking number sentences. $7 \times 4 = 28$ $4 \times 7 = 28$ $28 \div 7 = 4$ $28 \div 4 = 7$
Division with remainders	14 ÷ 3 = Divide objects between groups and see how much is left over	Jump forward in equal jumps on a number line then see how many more you need to jump to find a remainder. 0 4 8 12 13 Draw dots and group them to divide an amount and clearly show a remainder.	Complete written divisions and show the remainder using r. $\begin{array}{c} 29 \div 8 = 3 \text{ REMAINDER 5} \\ \uparrow \uparrow \uparrow \uparrow & \uparrow \\ \text{dividend divisor quotient remainder} \end{array}$

Short division	Tens Units	Students can continue to use drawn diagrams with dots or circles to help them divide numbers into equal groups.	Begin with divisions that divide equally with no remainder.
	3 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3		2 1 8 3 3 4 8 7 2 Move onto divisions with a remainder.
	Use place value counters to divide using the bus stop method alongside	Encourage them to move towards counting in multiples to divide more efficiently.	8 6 r 2
	Image: Calculations Calculations Image: Calculations 42 + 3	Use known multiplicative facts to help support an estimation where the numbers are larger.	5 4 3 2 Finally move into decimal places to divide the total accurately.
			14.6
	Start with the biggest place value, we are sharing 40 into three		
	groups. We can put 1 ten in each group and we have 1 ten left over.		3 5 5 1 1 . 0
	We exchange this ten for ter ones and then share the ones equally among the groups.		
	Image: system of the system		
Long division	325 divided by 15	Formal method	Formal method in context
		 List the multiples of 15 by repeated addition 15 30 45 etc How many 15's in 3 hundreds? Three hundreds 	 List the multiples of 15 by repeated addition 15 30 45 etc How many 15's in 3 hundreds? Three hundreds
		need to be exchanged for 30 tens3. How many groups of 15 can you make out of 32 tens?	need to be exchanged for 30 tensHow many groups of 15 can you make out of 32 tens?

Divisor (15) 3H 2T Sones	4 Look down your multiple list Loan make 2	4 Look down your multiple list Loan make 2
	groups of 15 to equal 30 tens	groups of 15 to equal 30 tens
	5 I had 32 tens and Lused 30 tens which leaves 2	5 I had 32 tens and Lused 30 tens which leaves 2
1 List the multiples of 15 by repeated addition	tons loft	tons left
	6 Libra 2 tons left. We exchange the 2 tons for 20	6 L have 2 tons left. We exchange the 2 tons for 20
15	0. Thave 2 tens left. We exchange the 2 tens lof 20	ones and add to the E ones in the ones column I
	ones and add to the 5 ones in the ones column. I	ones and add to the 5 ones in the ones column. I
		now have 25 ones.
2. How many 15's in 3 hundreds? Three hundreds need	7. How many 15 ones are there is 25 ones? I ca	7. How many 15 ones are there is 25 ones? I ca
to be exchanged for 30 tens	make 1 group of 15 ones. I had 25 ones, I used 15	make 1 group of 15 ones. I had 25 ones, I used 15
3. How many groups of 15 can you make out of 32	ones so I have 10 ones left.	ones so I have 10 ones left.
tens?	We record the remainders as r. 10	We record the remainders as r. 10
4. Look down your multiple list I can make 2 groups of		
15 to equal 30 tens.		8 In context (money and measure) the remainders
5. I had 32 tens and I used 30 tens which leaves 2 tens		need to be shown as a desimal
left.		need to be shown as a decimal.
6. I have 2 tens left. We exchange the 2 tens for 20		
ones and add to the 5 ones in the ones column 1		
now have 25 ones		
7 How many 1E ones are there is 2E ones? I sa make 1		
7. How many 15 ones are there is 25 ones? I to make 1		
group of 15 ones. I had 25 ones, I used 15 ones so I		
have 10 ones left.		
We record the remainders as r. 10		

Division structures	Quotitive division contexts	Partitive division contexts
Example problem	'There are fifteen biscuits. If I put them into bags of five, how many bags will I need?'	' I have twenty conkers and I share them equally between five children. How many conkers does each child get?'
Key language	' divided into groups of' Fifteen divided into groups of five is eual to three.	' divided between' Twenty divided between five is equal to four each.

Key Mathematical language glossary

Concept Definition	Definition
Acute	Describes angles between 0 and 90
	degrees.
Adjacent	Adjoining (as used to describe lines and
	angles).
Alternate	Every other one in a sequence.
Angle	The number of degrees rotated around a point
Area	The amount of space within a perimeter (expressed in square units)
Ascending order	The arrangement of numbers from smallest to largest
Average	A number representing a set of numbers (obtained by dividing the total of
	the numbers by the numbers itself).
Axis of symmetry	A line dividing a shape into two symmetrical parts
Base	The line or face on which a shape is standing
Baker's dozen	The colloquial name given to the number 13
Base angles	Those angles adjacent to the base of a shape
Bisect	To divide into two equal parts.
Breadth	Breadth is another name for width. It is
	the distance across from side to side.
Capacity	The amount of space in an object (the amount of liquid or air it contains)
Cardinal number	A number that shows quantity but not order.
Carroll Diagram	A problem-solving diagram used in classification activities.
Circumference	The distance around a circle (its perimeter).
Composite number	A number with more than two factors.

Congruent	Congruent shapes are the same shape and size (equal).
Consecutive numbers	Consecutive numbers are numbers follow in order without interruption. EG
	2, 3, 4, 5
Coordinates	Numbers used to locate a point on a grid.
Denominator The number below the line in a fraction.	
Descending order	The arrangement of numbers from the largest to smallest.
Diagonal	A straight line connecting two non-adjacent vertices (corners) of a polygon.
Difference	By how much a number is bigger or smaller than another.
Digit	Any number from 0 to 9 (inclusive).
Digital root	The digital root of 58 is 4 because 5 + 8 =13 and 1 + 3 = 4
Dimensions	The measurements of a shape (i.e.length, width, height).
Dodecagon	A twelve sided polygon.
Edge	The intersection of two faces of a
	three-dimensional object.
Equation	A statement of equality between two
	expressions (e.g. $3 \times 4 = 6 + 6$).
Equilateral triangle	A triangle with congruent (equal)sides and angles.
Even number	A positive or negative number exactly divisible by 2.
Exterior	Outside.
Face	A plane surface of a three-dimensional object.

Face value	The numeral itself despite its position in a number (e.g. the face value of 8 in 38,250 is 8).
Factor	A number which will divide exactly into another number.
Greater than	An inequality between numbers. The symbol used to represent greater than is an arrow pointing towards the smallest number.
Gross	The name given to the number 144.
Hendecagon	A two dimensional shape with eleven sides and eleven angles. It is also called an undecagon.
Heptagon	A two dimensional shape withseven sides and seven angles. It is also called a septagon.
Hexagon	A polygon with six sides.
Horizontal	Describes a line or plane parallel to the earth's surface.
Improper fraction	A fraction whose numerator is equal to or greater than it denominator.
Integer	A negative or positive whole number.
Interior	Inside.
Intersection	The point or line where two lines or two faces meet.
Irregular shapes	Shapes which do not have all congruent sides and all congruent angles.
Isosceles triangle	A triangle which has two equal sides of equal length.
Kite	A quadrilateral that has two adjacent pairs of sides that are equal in length, and at least one pair of opposite angles are equal.
Less than	An inequality between numbers. The symbol used to represent less than

	is an arrow pointing towards the smallest number.
Line of symmetry	(See axis of symmetry).
Lozenge	Another name for a rhombus.
Mean	The average of a set of numbers. The sum of the values in a set of data
	divided by the total number of items in that set.
Median	The middle value of a set of ordered data.
Mode	The value that occurs the most often in a set of data.
Multiple	The product of a given number with another factor.
Numerator	The number above the line in a fraction.
Oblique	Oblique means sloping or slanting.
Oblong	A shape with two pairs of straight, unequal sides and four right angles.
	Also known as a rectangle.
Obtuse angle	An angle between 90 and 180 degrees.
Octagon	A polygon with eight sides and eight angles.
Odd number	A number that when divided by two leaves a remainder of one.
Ordinal number	Describes a position in a number sequence.
Parallel lines	Lines with no common points and always the same distance apart.
Parallelogram	A four-sided polygon with opposite sides equal and parallel and the
	opposite angles are equal in size.

Perimeter	The length of the distance around the boundary of a shape.
Perpendicular line	A line at right angles to another line or plane.
Polyhedron	A three dimensional shape with plane faces.
Place value	Indicates the position of a numeral (e.g. the place value of the 3 in 738 is 30)
Prime number	A number with only two factors, 1 and itself (e.g. 2,3,5,7,11, 13, 17, 19, 23)
Product	The result when two or more numbers are multiplied.
Quadrant	A quarter of the area of a circle which also contains a right angle.
Quotient	The result when one number is divided by another number.
Quindecagon	A polygon with fifteen sides and fifteen angles.
Rectangle	A quadrilateral with opposite sides equal and parallel and containing four right angles.
Reflex angle	An angle greater than 180 degrees.
Rhombus	A parallelogram with congruent sides. Opposite sides are parallel and opposite sides are equal in size.
Roman numerals	Seven letters are used in combination to write numbers: I = 1 V = 5 X = 10 L = 50 C = 100 D = 500 M = 1000

Rotational symmetry	A shape is said to have rotational symmetry if it looks the same in different
	positions when rotated about it's centre.
Rounding	An approximation used to express a
	number in a more convenient way.
Scalene triangle	A triangle that has three sides of different length and no equal angles.
Score	The name given to the number 20.
Squared	A number squared is a number multiplied by itself.
Square number	A number whose units can be arranged into a square (e.g.
	1,4,9,16,25,36,49,64)
Sum	The result when two or more numbers are added together.
Symmetrical	A shape is symmetrical if it is identical on either side of a line dividing it into
	two parts.
Tally	A record of items using vertical and oblique lines to represent each item.
Tetragon	A four sided shape.
Tessellation	Shapes fitted together with a number of exact copies and with no overlaps
	or gaps.
Translation	This takes place when a shape is moved from one place to another just by
	sliding it (without rotating, reflecting or enlarging).

Trapezium	A quadrilateral with two parallel sides.
Triangular number	A number whose units can be arranged into a triangle (e.g. 1, 3, 6, 10, 15, 21)
Trigon	A three sided shape.
Vertex	The point at which two or more line segments or two or more edges of a polyhedron meet.
Vertical line	A line which is at right angles to a horizontal line.