Addition			
Objective	Concrete	Pictorial	Abstract
Combining two parts to make a whole: partwhole model	Use cubes to add two numbers together as a group or in a bar.		$\begin{aligned} & 4+3=7 \\ & 10=8+2 \end{aligned}$
		수우웅 8 1	deeper understanding.
Starting at the bigger		$12+5=17$	$5+12=17$
	Using a bead string to add on one each time starting at the bigger number, reinforcing 1:1 correspondence and cardinality.	Using a number line to add on one each time starting at the bigger number. Alternatively, complete one jump to find the answer using known facts to support this. Visual and efficient jumps.	Reorder the calculation to place the bigger number in your head and count one. Reinforcing the rule of commutativity.

ر I Primary School (Academy)
Wentworth Primary School - Calculation Policy

$$
7+4=11
$$

IfI am at seven, how many more do I need to make 10 . How many more do ladd on now?

I know that $7+4=7+3+1$ so the sum is 11.

$(4+7+6)$	$=10+7$
10	Combine the two numbers that make 10 and then add on the rema inder.
	$=17 \quad$

Expanded form

Calculations
$21+42=$
21
$+\underline{42}$
$60+3=63$

Moving from the expanded form to a more formal written method to create greater efficiency.

ر (Primary School (Academy)

Children can draw a pictorial representation to show the exchanging from the PV column with the smallest value.

-

Annotations can be made to support and mathematical discussions/thinking

Start by partitioning the numbers before moving on to clearly show the exchange below the addition.

$20+5$			
$40+8$			
$60+13$	$=73$	\quad	536
:---			
+85			
$\frac{621}{11}$			

As the children move on, introduce decimals with the same number of decimal places and different. Money can be used here.

2	3	.	3	6	1
	9		0	8	0
5	9	.	7	7	0
+	1	3	0	0	
9	3	.	5	1	1
2	1		2		

The use of rounding/ near doubles/same difference (subtraction) can support mental efficiency and automaticity with calculating. EG: Encourage to add 50 and subtract 2 for example \mathbf{A}

Additive structures:

First... then... now is identified as Augmentation

First Tom had two sweets Then Tom got one more sweet	2		
Now Tom has 3 sweets	Augend	1	
Addend			

The initial value, known as the augend is increased by the addend (the new amount).

- Primary School (Academy)

The combining of two or more quantities is identified as Aggregation

Tom had two sweets and John had three sweets: how many do they have altogether?
Key vocabulary: How many? How much? What is the total? Altogether there are...

Subtraction				
Objective	Concrete	Pictorial		Abstract
Subtracting ones	Use physical objects, counters, cubes etc to show how objects can be taken away. $6-2=4$	Cross out drawn objects to show what has been taken away. $10-4=6$		$\begin{gathered} 8-3=5 \\ 15-2=13 \end{gathered}$ Counting back in ones remembering the starting point.
Counting back	Make the larger number in your subtraction. Move the beads along your bead string as you count backwards in ones. 13-4 Use counters and move them away from the group as you take them away counting backwards as you go.	Count back on a number line or number track Start at the bigger number and count back the smaller number showing the jumps on the number line. This can progress all the way to counting back using two 2 digit numbers.	20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0	Put 13 in your head and count back 4. What number are you at? Making relationships and connections between known facts to support efficiency.
Finding the difference	Compare amounts and objects to find the difference. Use cubes to build towers or make bars to find the difference Use basic bar models with items to find the difference.			Hannah has 23 sandwiches, Helen has 15 sandwiches. Find the difference between the number of sandwiches.

Part whole models			
Making ten	Make 14 on the ten frame. Take away the four first to make 10 and then takeaway one more so you have taken away 5. You are left with the answer of 9 .		$16-8=$ Create efficiency with calculating to mentally partition and solve.
Column method no regrouping	Use Base 10 to make the bigger number then take the smaller number away. Show how you partition numbers to subtract. Again make the larger number first.	- Draw the Base 10 or place value counters alongside the written calculation to help to show working.	$\begin{gathered} 47-24=23 \\ -\frac{40+7}{20+7} \\ \hline 20+3 \end{gathered}$ Expanded form This will lead to a clear written column subtraction.

Column method with	Use Base 10 to start with before moving on to place value counters. start with one exchange before moving onto subtractions with 2 exchanges.			
regrouping		$	$	Make the larger number with the place value counters
:---				

Start with the ones column. 4 ones subtract 8 ones... There are not enough ones. I will exchange one ten for 10 ones etc...

Draw the counters onto a place value grid and show what you have the exchanges you make.

${ }^{\circ}$

Annotations can be made to support and mathematical discussions/thinking.

Children can start their formal written method by partitioning the number into dear place value columns.

Moving forward the children use a more compact method.
This will lead to an understanding of subtracting any number including decimals.

	5	12		1
2	6	3		0
	2	6	\cdot	5
2	3	6	\cdot	5

Subtraction structures

, Primary School (Academy)

Multiplication			
Doubling	Use practical activities to show how to double a number.	Draw pictures to show how to double a number Double 4 is 8	
Counting in multiples	Count in multiples supported by concrete objects in equal groups.	 Use a number line or pictures to continue support in counting in multiples. 'Rolling numbers' (using fingers, left to right) reinforces cardinality and ordinality.	Count in multiples of a number aloud. Write sequences with multiples of numbers. $\begin{gathered} 2,4,6,8,10 \\ 5,10,15,20,25,30 \end{gathered}$ Patterns of number should be forward, backwards related to doubles and halving. EG $3 \times 2=6$ so 6×2 is double 6 or $9 \times 2=10 \times 2$ 2 Missing number examples and balancing number sentences could also be given to deepen; embedding mathematical concepts. $? \times 3=12$ $12=3 x$? ? $\times 3=1 \times 12$

Repeated addition		There are 3 giates Each glate has 2 star bisculs on How many biscults are there? 2 add 2 add 2 equals 6 $5+5+5=15$	Write addition sentences to describe objects and pictures.
Arrays showing commutative multiplication	Create arrays using counters/ cubes to show multiplication sentences		Use an array to write multiplication sentences and reinforce repeated addition. Develop the use of language making the relationship between 4 groups of $2=8$ 42 's are $8,2+2+2+2=8$ and $8=4 \times 2$

ر \& Primary School (Academy)

Move on to using Base 10 to move towards a more compact method

4 rows of 13
of a number. We are multiplying by 4 so we need 4 rows

Fill each row with 126.

Catianans
32

Add up each column, starting with the ones making any exchanges needed

Then you have your answer.

Children can represent the work they have done with place value counters in a way that they understand.

They can draw the counters, using colours to show different amounts or just use circles in the different columns to show their thinking as shown below

Further progression and efficiency can be developed through unitising (placing a value on each counter).

Start with multiplying by one digit numbers and showing the clear addition alongside the grid.

\times	30	5
7	210	35

$210+35=245$

Moving forward, multiply by a 2 digit number showing the different rows within the grid method.

10	8
10	100
30	80
	30

X	1000	300	40	2
10	10000	3000	400	20
8	8000	2400	320	16

Calculating efficiently by making the numbers smaller, using powers of 10: $30 \times 7=3 \times 7 \ldots 21 \times 10=210$

- Primary School (Academy)

」 Primary School (Academy)

Sharing objects into groups	I have 10 cubes, can you share them equally in 2 groups?	Children use pictures or shapes to share quantities. $8 \div 2=4$	Share 9 buns between three people. $9 \div 3=3$
Division as grouping	Divide quantities into equal groups. Use cubes, counters, objects or place value counters to a id understanding. $\begin{gathered} 96+3=32 \\ \hline \end{gathered}$	Use a number line to show jumps in groups. The number of jumps equals the number of groups. Think of the bar as a whole. Split it into the number of groups you are dividing by and work out how many would be within each group.	$\begin{gathered} 28 \div 4=7 \\ ? \div 4=7 \\ 7=28 \div ? \end{gathered}$ Using the inverse operation to solve a statement.
Division using arrays		Draw an array and use lines to split the array into groups to make multiplication and division sentences.	Find the imverse of multiplication and division sentences by creating four linking number sentences. $\begin{aligned} & 7 \times 4=28 \\ & 4 \times 7=28 \\ & 28 \div 7=4 \\ & 28 \div 4=7 \end{aligned}$
Division with remainders	$14 \div 3=$ Divide objects between groups and see how much is left over	Jump forward in equal jumps on a number line then see how many more you need to jump to find a remainder. Draw dots and group them to divide an amount and clearly show a remainder (3) () () ():	Complete written divisions and show the remainder using r .

- Primary School (Academy)

Short division	Use place value counters to divide using the busstop method alongside Start with the biggest place value, we are sharing 40 into three groups. We can put 1 ten in each group and we have 1 ten left over.	Students can continue to use drawn diagrams with dots or circles to help them divide numbers into equal groups. Encourage them to move towards counting in multiples to divide more efficiently. Use known multiplicative facts to help support an estimation where the numbers are larger.	Begin with divisions that divide equally with no remainder. Move onto divisions with a remainder. Finally move into decimal places to divide the total accurately.
Long division	325 divided by 15	Formal method 1. List the multiples of $\mathbf{1 5}$ by repeated addition 15 30 45 etc 2. How many 15 's in 3 hundreds? Three hundreds need to be exchanged for 30 tens 3. How many groups of 15 can you make out of 32 tens?	Formal method in context 1. List the multiples of $\mathbf{1 5}$ by repeated addition 15 30 45 etc 2. How many 15 's in 3 hundreds? Three hundreds need to be exchanged for 30 tens 3. How many groups of 15 can you make out of 32 tens?

Divisor (15). 3H. 2T 5ones

1. List the multiples of 15 by repeated addition 15 30 45 etc
2. How many 15 's in 3 hundreds? Three hundreds need to be exchanged for 30 tens
3. How many groups of 15 can you make out of 32 tens?
4. Look down your multiple list... I can make 2 groups of 15 to equal 30 tens.
5. I had 32 tens and I used 30 tens which leaves 2 tens left.
6. I have 2 tens left. We exchange the 2 tens for 20 ones and add to the 5 ones in the ones column. I now have 25 ones.
7. How many 15 ones are there is 25 ones? I ca make 1 group of 15 ones. I had 25 ones, I used 15 ones so I have 10 ones left.
8. We record the remainders as r. 10
9. Look down your multiple list... I can make 2 groups of 15 to equal 30 tens.
10. I had 32 tens and I used 30 tens which leaves 2 tens left.
11. I have 2 tens left. We exchange the 2 tens for 20 ones and add to the 5 ones in the ones column. I now have 25 ones.
12. How many 15 ones are there is 25 ones? I ca make 1 group of 15 ones. I had 25 ones, I used 15 ones so I have 10 ones left.
We record the remainders as r. 10
13. Look down your multiple list... I can make 2 groups of 15 to equal 30 tens.
14. I had 32 tens and I used 30 tens which leaves 2 tens left.
15. I have 2 tens left. We exchange the 2 tens for 20 ones and add to the 5 ones in the ones column. I now have 25 ones.
16. How many 15 ones are there is 25 ones? I ca make 1 group of 15 ones. I had 25 ones, I used 15 ones so I have 10 ones left.
We record the remainders as r. 10
17. In context (money and measure), the remainders need to be shown as a decimal.

Division structures	Quotitive division contexts	Partitive division contexts
Example problem	'There are fifteen biscuits. If I put them into bags of five, how many bags will I need?'	I have twenty conkers and I share them equally between five children. How many conkers does each child get?'
Key language	'... divided into groups of...'	
Fifteen divided into groups of five is eual to three.	'... divided between...'	

- Primary School (Academy)

Key Mathematical language glossary

Concept Definition	Definition
Acute	Describes angles between 0 and 90 degrees.
Adjacent	Adjoining (as used to describe lines and angles).
Alternate	Every other one in a sequence.
Angle	The number of degrees rotated around a point
Area	The amount of space within a perimeter (expressed in square units)
Ascending order	A number representing a set of numbers (obtained by dividing the total of the numbers by the numbers itself).
Average	A line dividing a shape into two symmetrical parts
Axis of symmetry	The line or face on which a shape is standing
Base	The colloquial name given to the number 13
Baker's dozen	Those angles adjacent to the base of a shape
Base angles	To divide into two equal parts.
Bisect	Breadth is another name for width. It is the distance across from side to side.
Breadth	The amount of space in an object (the amount of liquid or air it contains)
Capacity	A number that shows quantity but not order.
Cardinal number	A problem-solving diagram used in classification activities.
Carroll Diagram	The distance around a circle (its perimeter).
Circumference	A number with more than two factors.
Composite number	

Wentworth Primary School - Calculation Policy	Congruent shapes are the same shape and size (equal).
Congruent	Consecutive numbers are numbers follow in order without interruption. EG School (Academy) $2,3,4,5$
Consecutive numbers	Numbers used to locate a point on a grid.
Coordinates	The arrangement of numbers from the largest to smallest.
Denominator The number below the line in a fraction.	A straight line connecting two non-adjacent vertices (corners) of a polygon.
Descending order	By how much a number is bigger or smaller than another.
Diagonal	Any number from 0 to 9 (inclusive).
Difference	The digital root of 58 is 4 because $5+8=13$ and $1+3=4$
Digit	The measurements of a shape (i.e.length, width, height).
Digital root	A twelve sided polygon.
Dimensions	The intersection of two faces of a three-dimensional object.
Dodecagon	A statement of equality between two expressions (e.g. $3 \times 4=6+6)$.
Edge	A triangle with congruent (equal)sides and angles.
Equation	A positive or negative number exactly divisible by 2.
Equilateral triangle	Outside.
Even number	A plane surface of a three-dimensional object.
Face	

Wentworth Primary School - Calculation Policy	
Face value	The numeral itself despite its position in a number (e.g. the face value of 8 in $38,250$ is 8$).$
Factor	A number which will divide exactly into another number.
Greater than	An inequality between numbers. The symbol used to represent greater than is an arrow pointing towards the smallest number.
Gross	The name given to the number 144.
Hendecagon	A two dimensional shape with eleven sides and eleven angles. It is also called an undecagon.
Heptagon	A two dimensional shape withseven sides and seven angles. It is also called a septagon.
Hexagon	A polygon with six sides.
Improper fraction	Describes a line or plane parallel to the earth's surface.
Integer	A fraction whose numerator is equal to or greater than it denominator.
Interior	A negative or positive whole number.
Intersection	Inside.
Irregular shapes	The point or line where two lines or two faces meet.
Isosceles triangle	Shapes which do not have all congruent sides and all congruent angles.
Kite	A triangle which has two equal sides of equal length.
And at least one pair of opposite angles are equal.	

ر I Primary School (Academy)

Wentworth Primary School - Calculation Policy	is an arrow pointing towards the smallest number.
Line of symmetry	(See axis of symmetry).
Lozenge	Another name for a rhombus.
Mean	The average of a set of numbers. The sum of the values in a set of data divided by the total number of items in that set.
Median	The middle value of a set of ordered data.
Mode	The value that occurs the most often in a set of data.
Multiple	The product of a given number with another factor.
Numerator	The number above the line in a fraction.
Oblique	Oblique means sloping or slanting.
Oblong	A shape with two pairs of straight, unequal sides and four right angles. Also known as a rectangle.
Obtuse angle	An angle between 90 and 180 degrees.
Octagon	A polygon with eight sides and eight angles.
Odd number	A number that when divided by two leaves a remainder of one.
Ordinal number	Describes a position in a number sequence.
Parallel lines	Lines with no common points and always the same distance apart. Parallelogram opposite angles are equal in size.

Wentworth Primary School - Calculation Policy	
Perimeter	The length of the distance around the boundary of a shape.
Perpendicular line	A line at right angles to another line or plane.
Polyhedron	A three dimensional shape with plane faces.
Place value	Indicates the position of a numeral (e.g. the place value of the 3 in 738 is 30)
Prime number	A number with only two factors, 1 and itself (e.g. 2,3,5,7,11, 13, 17, 19, 23...)
Product	The result when two or more numbers are multiplied.
Quadrant	A quarter of the area of a circle which also contains a right angle.
Quotient	The result when one number is divided by another number.
Quindecagon	A polygon with fifteen sides and fifteen angles.
Rectangle	A quadrilateral with opposite sides equal and parallel and containing four right angles.
Reflex angle	An angle greater than 180 degrees. Rhombus Roman numeralsA parallelogram with congruent sides. Opposite sides are parallel and opposite sides are equal in size.

Wentworth Primary School - Calculation Policy

Rotational symmetry	A shape is said to have rotational symmetry if it looks the same in different positions when rotated about it's centre.
Rounding	An approximation used to express a number in a more convenient way.
Scalene triangle	A triangle that has three sides of different length and no equal angles.
Score	The name given to the number 20.
Squared	A number squared is a number multiplied by itself.
Square number	A number whose units can be arranged into a square (e.g. $1,4,9,16,25,36,49,64 \ldots$...)
Sum	The result when two or more numbers are added together.
Symmetrical	A shape is symmetrical if it is identical on either side of a line dividing it into two parts.
Tally	A record of items using vertical and oblique lines to represent each item.
Tetragon	A four sided shape.
Tessellation	Shapes fitted together with a number of exact copies and with no overlaps or gaps.
Translation	This takes place when a shape is moved from one place to another just by sliding it (without rotating, reflecting or enlarging).

, Primary School (Academy)
Wentworth Primary School - Calculation Policy

Trapezium	
Triangular number	A quadrilateral with two parallel sides. $21 \ldots)$.
Trigon	A three sided shape.
Vertex	The point at which two or more line segments or two or more edges of a polyhedron meet.
Vertical line	A line which is at right angles to a horizontal line.

